Psychosocial Oncology Research Faces Uncertain Future in UK

In November, the cancer charity Cancer Research UK announced its research strategy for the next 5 years. Included in it are goals to increase research on the early diagnosis of cancer; invest more in research on radiotherapy and surgery; and devote more research to cancers of the lung, pancreas, and esophagus. But for some researchers, the strategy is notable for what it doesn’t include: Cancer Research UK has decided to discontinue funding research in several areas it has long supported, including psychosocial oncology.

The decision has “created seismic shockwaves” throughout the psychosocial oncology research community, said Lesley Fallowfield, Ph.D., director of the Cancer Research UK Sussex Psychosocial Oncology Group at the University of Sussex. At the same time, it means that she and her colleagues have to start looking for new funding in an uncertain economy. “With the current economic gloom and doom, this is not a good time to be looking for other funders,” Fallowfield said.

Broadly defined, psychosocial oncology investigates the psychological, behavioral, and social aspects of cancer. Likewise, research in this area is broad, even among the programs supported by Cancer Research UK. Fallowfield and her group have done research in several aspects of psychosocial oncology but primarily specialize in teaching effective communication skills to practicing oncologists. Galina Velikova, M.D., Ph.D., director of the Psychosocial Oncology and Clinical Practice Research Group at the University of Leeds, specializes in patient-reported outcomes of symptoms and emotional distress among cancer patients. Michael Sharpe, M.D., director of the Psychological Medicine Research Group at the University of Edinburgh, and his group do large-scale clinical trials on managing depression in cancer.

Cancer Research UK will continue to support all three programs until their grants run out, which is in 2011 for Fallowfield and 2012 for Sharpe and Velikova. Their program grants range from about £1.7 million to about £5 million over 5 years, “a mere blip”—less than 1%—of the organization’s total research budget, Fallowfield said.

Published in the Journal of the National Cancer Institute, May 26, 2009. Read the rest of this article online.

Darwin’s Legacy: Keeping Order

It’s hard to keep up with Erica McAlister as she darts through the labyrinth comprising the entomology department at London’s Natural History Museum. She’s eager to show off its treasures: iridescent beetles from South America, bugs with plantlike bodies, damselflies and dragonflies from around the world. “I was bitten by that, showing off,” she says, pointing to a wasp spider (Argiope bruennichi) in a case displaying preserved arachnids. She was at a party, trying to impress the guests by determining the spider’s sex, when it bit her. “I could probably give you a tour of things that have bitten me,” she says.

Instead, the current tour reaches its climax at the end of the corridor. “This is my room,” she says, pushing through a door to a corner room filled with several rows of 5-foot-tall green metal cabinets, stacked two high. The cabinets house the museum’s collection of insects from the order Diptera–the true flies, which include gnats, midges, and mosquitoes. McAlister, 35, is one of three Diptera curators among the entomology department‘s curatorial staff of about two dozen.

McAlister shows off the Diptera collection like an adoring parent: the lovely bee flies; the curious hairy legs of the robber fly; the amazing eyes of the stalk-eyed flies; the mosquito with feathered mid-legs that look like legwarmers; U.K. crane flies with wide wingspans and long, delicate legs; the horse fly with a 2-inch-long proboscis; the bot flies that lay their eggs on mosquitoes for transportation. “There’s so much diversity,” she says. “They’re amazing, insects.”

Read the rest of this story on Science Careers.

Science Careers Podcast

In 2007-2008, I did nine pieces on various career topics that were aired in the Science podcast. For most, I conducted the interviews, and wrote and voiced the script. Links to each of them are below.

Science Careers Podcast: Synthetic Biology [MP3]
17 October 2008
Hear three scientists talk about their career paths and the future of synthetic biology research.

Science Careers Podcast: Geoscience Careers [MP3]
8 August 2008
Hear from experts and geologists about the current job market for geoscientists.

Science Careers Podcast: An Interview with Catherine Cardelús [MP3]
13 June 2008
The young rainforest ecologist talks about her career path, her research, and what it’s like to work in the forest canopy.

Science Careers Podcast: European Visa Issues [MP3]
16 May 2008
A European policy official talks about coming to Europe to do science.

Science Podcast: Radioprotective Drugs; Modeling the Supergreenhouse; New Treatments for Alcoholism; Generation Y Workforce [MP3]
Rob Frederick, Kate Travis, Lucas Laursen. 11 April 2008
New drugs help cells survive exposure to radiation; how fewer biological materials in the atmosphere may have led to the Cretaceous supergreenhouse; an expanding suite of therapies to treat alcoholism; characteristics of the Generation Y workforce; and more.

Science Podcast: Predator-Induced Cloning; Organic Molecules in Protoplanetary Disks; Assessing Agricultural Science and Technology; Industry-Academia Collaborations [MP3]
Rob Frederick, Kate Travis, 14 March 2008
Sand dollar larvae respond to predator cues by cloning themselves; finding organic molecules in protoplanetary disks around stars; planning for future food and fuel needs with the largest assessment of agricultural science and technology; getting industry funding for scientific research; and more.

Science Podcast: Croplands for Biofuels Increases Greenhouse Gases; Science Budget; Good Mentoring; Reproducing in Cities [MP3]
Rob Frederick, Kate Travis, 8 February 2008
A new model suggests that land use changes would release more greenhouse gases than biofuels can save in the next few decades; examining the 2009 U.S. science budget; the characteristics of a good mentoring relationship; understanding lowe

Cancer in Europe: New Report, Recent Efforts Take Continent-wide Perspective

Patterns of cancer incidence and mortality across Europe are as varied as the continent’s geography. But a new report finds that, in general, obesity and tobacco use are driving cancer incidence, mortality, and survival across Europe: Overall cancer incidence has decreased since the mid-1990s in northern and western Europe except for obesity-related cancers, and incidence of and mortality from tobacco-related cancers is falling among men in northern, western, and southern Europe but increasing in central Europe.

The analysis, published in the June issue of the European Journal of Cancer, comes as two Europe-wide efforts related to cancer take shape: The European Code Against Cancer is about to be updated for the first time in 5 years, and the European Commission is gearing up to create a cancer plan for the entire European Union.

Published in the Journal of the National Cancer Institute, September 9, 2008. Read the full article online.

Prevention, Survivorship Highlighted in England’s Cancer Plan Update

Cancer prevention and survivorship feature prominently in England’s latest update to its national cancer plan. The update—called the cancer reform strategy—comes with £370 million (US$740 million) in new funding, though critics say that’s not nearly enough to make effective changes.

“Cancer’s a fast-moving area, and we’ve made a lot of strides in a lot of different areas. [The cancer reform strategy] is moving the agenda on with a focus on areas that weren’t focused on as strongly in the cancer plan,” said Teresa Moss, director of the National Cancer Action Team, part of England’s National Health Service (NHS).

Although the original cancer plan in 2000 did cover some aspects of prevention, the update strengthens the focus. “It’s a slightly different emphasis,” said Catherine Foot, head of policy for Cancer Research UK. “For instance, in 2000, the evidence wasn’t as clear as it is now on the link between obesity and cancer. In 2000, the policy initiatives on diet and cancer were things like the 5-a-day fruit and vegetable initiative, whereas now, we’re looking at obesity and weight management. It’s a shift in priorities.”

Published in the Journal of the National Cancer Institute, March 25, 2008. Read the full article online.

Recent Conference Addresses Research Integrity on Global Scale

The name Jon Sudbø is one that many in the cancer community will not soon forget. In early 2006, Sudbø admitted to fabricating patient data used in a study of nonsteroidal anti-inflammatory drugs and oral cancer risk published in The Lancet. Sudbø’s institution, the Norwegian Radium Hospital, promptly appointed a special commission to investigate all his research from the previous decade. The commission found evidence of falsified and fabricated data dating back to Sudbø’s Ph.D. project (J Natl Cancer Inst 2006;98:374–6).

The findings prompted the Norwegian government to formally put into place national research ethics committees tasked with proactive, preventive education on research integrity. The government also established a national office chaired by a judge to investigate cases of alleged scientific misconduct, and new legislation on ethics and integrity in research went into effect in July of this year.

The Sudbø case has parallels all over the world: Research misconduct made national headlines and led to a new national policy that defined the concept and set out a course of disciplinary action against future offenders. In September, the European Science Foundation and the U.S. Office of Research Integrity held the first world conference on research integrity to give researchers and policymakers from around the globe a chance to share their experiences in establishing such systems, as well as to discuss what a global framework for research integrity might look like.

The growing globalization of science is a major driving force behind a push to establish a world standard. “We are no longer dealing with single-investigator projects,” said Lida Anestidou, D.V.M., Ph.D., of the Institute for Laboratory Animal Research at the National Academies. “We have multicultural, multinational, multi-institutional, multi-investigator, very expensive investigations. Therefore, [the number of coauthors has] risen dramatically, and disputes over credit, over intellectual property, and over patents have all risen dramatically.”

Published in the Journal of the National Cancer Institute, December 15, 2007. Read the full article online.

Cancer in Africa: Health Experts Aim To Curb Potential Epidemic

It seems like cancer should be the least of the health worries in most of the countries on the African continent, where communicable diseases are the leading cause of death and the life expectancy in more than half of the countries is under 50 years.

Compared with those of Western countries, cancer rates in the region are relatively low. But the prognosis for cancer in Africa looks grim: In sub-Saharan Africa, there were 582,000 new cancers diagnosed in 2002, and 412,100 people died from the disease. If no interventions are put in place, it’s expected that the number of new cases diagnosed will rise to 804,000 and mortality will reach 626,400 by 2020.

The reasons why vary: Skyrocketing rates of human immunodeficiency virus (HIV)/AIDS have led to a rapid increase in the incidence of Kaposi sarcoma and other AIDS-related cancers; risk factors such as obesity and alcohol use are on the rise, affecting cancer and other noncommunicable diseases that share these risks; and there is a worrisome escalation in smoking rates among Africans, a trend that, if it continues, is sure to lead to a glut of tobacco-related cancers.

“I was taught in medical school that cancer is not a problem in Africa. But that is a myth,” said Twalib Ngoma, M.D., executive director of the Ocean Road Cancer Institute in Dar es Salaam, Tanzania. “If we don’t do something now, [cancer rates are] going to increase. We should not be complacent just because we find that infections are more of a problem now.”

Published in the Journal of the National Cancer Institute, July 24, 2007. Read the full story online.

Deciphering Immunology’s Dirty Secret

Before Bali Pulendran started his first major protocol at the Emory Vaccine Center in Atlanta, he wanted to meet his subjects. So, in the fall of 2004 he and postdoc Marcin Kwissa drove the 25 miles to Lawrenceville, Georgia, and the Yerkes Primate Research Center’s field station. There, Pulendran and Kwissa stood face to face with their trial participants: 25 rhesus macaques. “I remember staring at them and thinking: ‘Wow, these are who we’re going to be vaccinating’,” says Pulendran.

Nearly two years have passed and those monkeys now reside in the next building over from Pulendran’s office, where they’ve entered the final phases of a clinical trial for an HIV DNA vaccine developed at the center. The vaccine has already successfully reduced viral load in nonhuman primates, and it’s being tested in humans. Pulendran is adding a new twist, however. Two groups of the immunized monkeys have also received an adjuvant that targets toll-like receptors (TLRs), key components of the innate immune system.

HIV vaccine strategies have been vexed by, among other things, the virus’s ability to disarm the immune system and the immune system’s inability to generate antibodies against the virus. But discoveries just in the past decade have uncovered a wellspring of innate immune targets that appear to converse with the adaptive response and may aid in shutting down HIV. “By giving a TLR ligand with the DNA vaccine, can you make the immune response stronger and get an even more profound effect on the viral load?” he asks. The strategy is young, and at 40 years old, so is Pulendran.

In August 2006, the 25 monkeys were brought to the Atlanta campus to be infected with SIV, and the excitement is palpable. The true test will be whether the subjects that received TLR adjuvants have significantly reduced viral loads. Pulendran has been awaiting the results from the virology lab for weeks. “I’m hopeful,” he says, pausing and then drawing in a deep breath. “But we’ll see.”

Read the entire story, Deciphering Immunology’s Dirty Secret, in The Scientist.

Eat Your Way to Better DNA

Published in The Scientist, September 2006:

Jose M. Ordovas has been studying the role of lipoproteins in heart disease for decades. His laboratory and others have tried to tease out how these proteins factor into why some people


can eat an unhealthy diet – that is, lots of dietary fat – and still have high levels of what is often referred to as good high-density lipoprotein (HDL) cholesterol. The senior scientist and director of the Nutrition and Genomics Laboratory at Tufts University in Boston honed in on APOA1, which encodes the HDL component apolipoprotein (apo) A-I. A specific SNP in its promoter region (APOA1 – 75G/A) was first identified in the early 1980s, and studies in the decade followin scrutinized the association between the G and A alleles and HDL concentrations. The results varied widely. Some studies suggested that carriers of the A allele (about 25% of the population) had higher HDL levels than carriers of the more common G allele, but other studies came to the exact opposite conclusion.

In 2002, he and his colleagues tested whether dietary fat might modulate the effect of the allele. “We decided to consider whether APOA1 is regulated by nutrients, since people are eating different things,” Ordovas recalls. They looked at 755 men and 822 women who were participants in the Framingham Offspring Study, a population for which there are rigorous data on HDL levels, other cardiovascular risk factors, and dietary fat intake. They paired this information with genotype data for each patient and found that the polymorphism on its own didn’t have an effect on HDL level. Instead, in people heterozygous or homozygous for the A allele, “what we found is that polyunsaturated fatty acids, which are very good regulators of gene expression, happen to modulate the expression of this genotype,” Ordovas says.

It was the sort of finding that laid the foundation for the nascent field of nutrigenomics. At its core, the field is the study of how genes and nutrients interact to promote health or disease. It also includes understanding how gene and protein expression are affected by the presence or absence of specific nutrients, whether and how diet-regulated genes play a role in disease, the degree to which an individual’s diet affects the risk of disease given his or her genetics, and whether one’s diet may be altered to maintain that balance between health and disease.